Prediction of MHC-peptide binding: a systematic and comprehensive overview.
نویسندگان
چکیده
T cell immune responses are driven by the recognition of peptide antigens (T cell epitopes) that are bound to major histocompatibility complex (MHC) molecules. T cell epitope immunogenicity is thus contingent on several events, including appropriate and effective processing of the peptide from its protein source, stable peptide binding to the MHC molecule, and recognition of the MHC-bound peptide by the T cell receptor. Of these three hallmarks, MHC-peptide binding is the most selective event that determines T cell epitopes. Therefore, prediction of MHC-peptide binding constitutes the principal basis for anticipating potential T cell epitopes. The tremendous relevance of epitope identification in vaccine design and in the monitoring of T cell responses has spurred the development of many computational methods for predicting MHC-peptide binding that improve the efficiency and economics of T cell epitope identification. In this report, we will systematically examine the available methods for predicting MHC-peptide binding and discuss their most relevant advantages and drawbacks.
منابع مشابه
Simulation of Major Histocompatibility Complex (MHC) Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands
Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.
متن کاملA Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach
The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-peptide binding affinities, 29 peptide/...
متن کاملTowards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes
The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC protein...
متن کاملSVMHC: a server for prediction of MHC-binding peptides
Identification of MHC-binding peptides is a prerequisite in rational design of T-cell based peptide vaccines. During the past decade a number of computational approaches have been introduced for the prediction of MHC-binding peptides, efficiently reducing the number of candidate binders that need to be experimentally verified. Here the SVMHC server for prediction of both MHC class I and class I...
متن کاملCoupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current pharmaceutical design
دوره 15 28 شماره
صفحات -
تاریخ انتشار 2009